URETI Enabling Technology

Kick-off Meeting with Sponsors

Convened at:

NASA Glenn Research Center

Jerry Seitzman

November 18, 2002

ENABLING TECHNOLOGIES

Pursue basic technology areas with potential applications to wide range of aeropropulsion issues

Actuators

- Combustion driven actuators for mixing control
- Plasma augmentors for combustion

Diagnostics and MEMS Sensors

- Passive, wireless MEMS sensors
- Turbulence and hot streak diagnostics in turbines

Nanotechnology

- Nanomaterials for sensors
- Nanometallic fuel additives

Enabling Technologies - Actuators

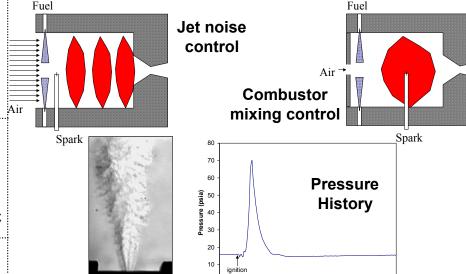
Combustion-Driven Actuators for Mixing Control

Glezer, Neumeier, Jagoda (Georgia Tech)

Science & Technology Objective(s):

- Develop innovative, combustion-based fluidic actuators for mixing control, e.g., in
 - combustors for reduced emissions (Task 2.3.2)
 - free jets for noise reduction (Task 2.3.4)

Collaborations:


- · Government -ARL, AFRL
- URETI –Combustor control, Noise control
- Industry Val Kibens and William Bower (Boeing)
- Synergism with existing programs—ARMY MURI, DARPA MAFC

Proposed Approach:

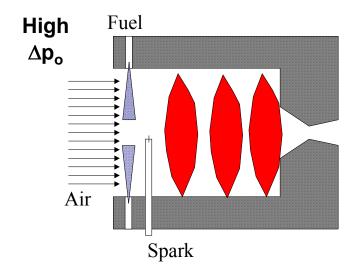
- Actuator performance analysis
- Assessment of required momentum for combustor and free jet applications using existing large scale mechanical hardware
- Parametric investigation of actuator performance, scaling and preferred dimensional configurations
- · Characterization of actuator jet
- · Demonstration on combustor and jet simulators

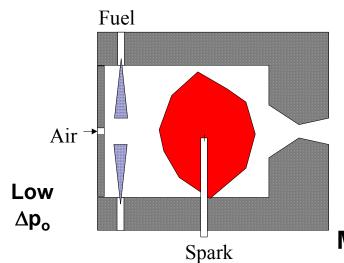
NASA Relevance/Impact:

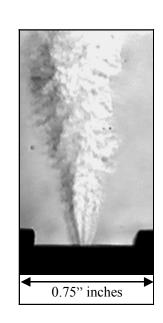
- Reduce emissions
 - Meeting NASA emission goals for subsonic aircraft
 - > Enabling acceptable emissions for supersonic transport
- Meet NASA jet engine noise reduction goals

Milestones/Accomplishments:

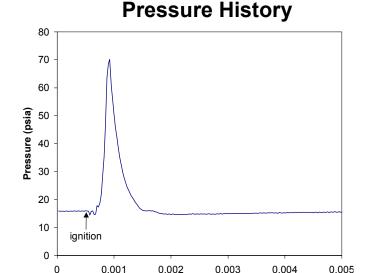
- Establishment of required actuation performance in emission and noise control applications with existing subscale experimental facilities/mechanical actuators
- Analysis of combustion-based actuation to meet the established requirements
- Design of prototypical experimental setup
- Actuator performance characterization
- Demonstration of combustion based actuation on subscale jet and combustor simulators






Combustion-Driven Actuators for Mixing Control Concept - Applications Issues

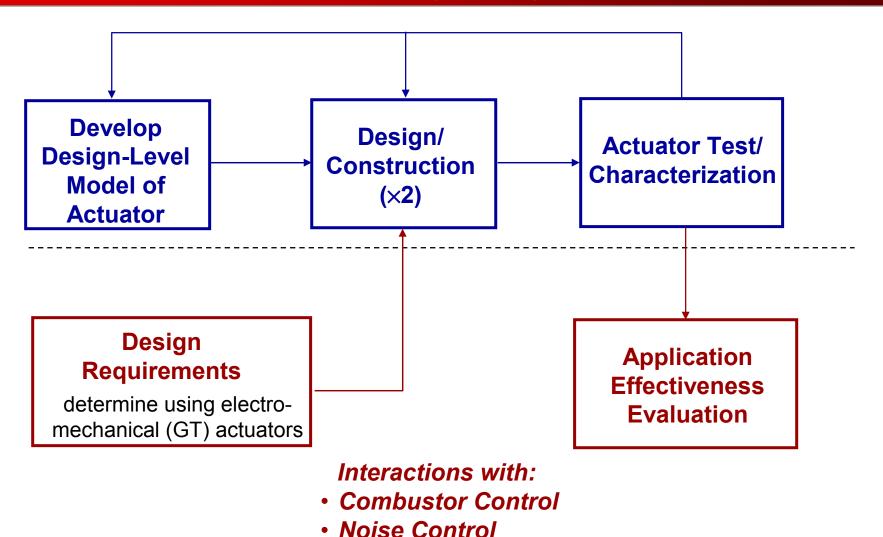
Glezer, Neumeier, Jagoda (Georgia Tech)



Jet Noise Control

Combustor
Mixing Control

Time (sec)



Combustion-Driven Actuators for Mixing Control Proposed Approach

Glezer, Neumeier, Jagoda (Georgia Tech)

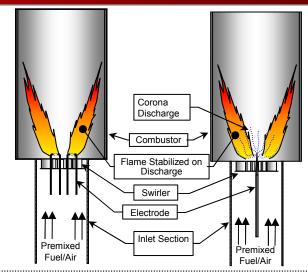
Enabling Technologies - Actuators Plasma Augmented Combustion

Jagoda and Menon (Georgia Tech)

Science & Technology Objective(s):

- Develop low power arc/corona discharge to stabilize lean flames
- Develop distributed arc/fast-response relight system
- Develop advanced simulation tool to predict plasma augmented combustion and flame stabilization

Collaborations:


- Government: NASA/GRC
- URETI: Low Emission Combustor Studies, URETI/MSFC studies in weakly ionized gases
- Industry: General Electric Aircraft Engine Co.

Proposed Approach:

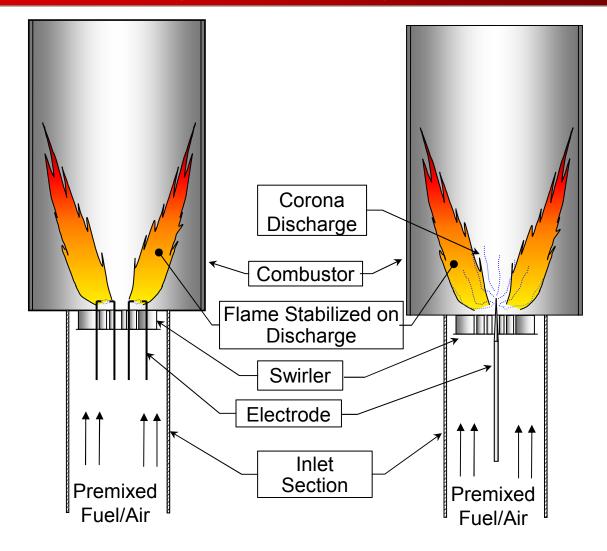
- Determine minimum power for stable arc/corona discharge, optimize discharge design, and investigate flame stabilization by plasma generated species
- Simulations of plasma formation near discharge, its interaction with turbulent flames, validation with data

NASA Relevance/Impact:

- Low emission and stable lean combustion system
- Advance predictive capability to study plasma-flame interaction in realistic system, prediction of emission under varying conditions

Milestones/Accomplishments (first 2 years):

- · Determine minimum arc/corona discharge strength
- Compare effectiveness of arc/corona discharge
- Investigate optimal radical species for flame stabilization and fast arc initiation
- Validation of 3D plasma flow predictive tool
- Application of plasma simulation model to experimental arc device
- Optimization of plasma discharge system using combined numerical and experimental studies



Plasma Augmented Combustion Concept

Jagoda and Menon (Georgia Tech)

Plasma Augmented Combustion Proposed Approach

Jagoda and Menon (Georgia Tech)

 Stabilization of combustion in lean-blow off regime is critical to extend flammability limit and for "flameless" combustion mode

Experimental:

- Develop low-power plasma discharge/jet systems
- Compare performance of arc and corona discharge
- Identify ion/radical species that provide best flame-holding
- Develop fast arc initiation procedure
- Determine optimum injector distribution in combustor

Numerical

- Develop an advanced 3D plasma-fluid-turbulence simulation model with realistic kinetics using ISAT and ANN
- Apply simulation tool to the experimental device to understand the physics of flame stabilization by plasma discharge
- Provide insight into design and help optimize the system
- Use simulation model to study performance of combustion system near lean blow out with and without plasma enhancement

Enabling Technologies - Diagnostics and Sensors

Wireless MEMS Sensors for Harsh Environments

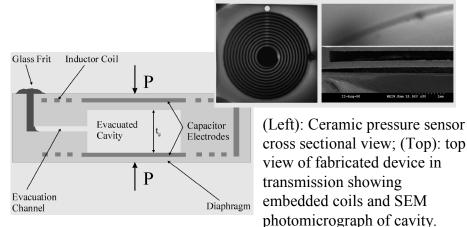
Allen (Georgia Tech)

Science & Technology Objective(s):

- Demonstrate passive, wireless MEMS sensors in harsh environments (T > 600°C)
- Demonstrate sensing of p, T, chemical species

Collaborations:

- · Government NASA, Air Force
- URETI Wang, Jagoda, Glezer, Sankar
- Industry United Technologies, P&W (potential)
- Synergism with existing programs Leverage previous MURI program results


Proposed Approach:

- Remotely sense physical parameters at high T using self-packaged, passive wireless sensors
 - complexity in high T environment kept to a minimum
 - no circuits, power supplies or contacts in high temperature environment
 - since sensing system is wireless, motion of sensor through medium is possible

NASA Relevance/Impact:

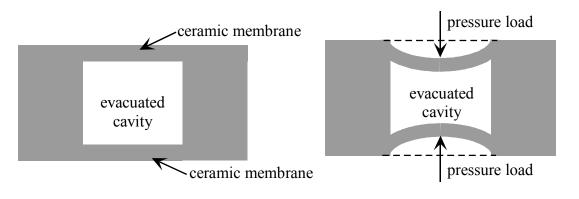
- Real-time engine performance adjustment and control
- · Health monitoring and maintainence

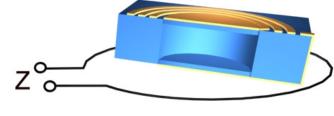
Concept:

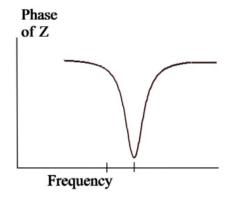
Milestones/Accomplishments (Years 1-2):

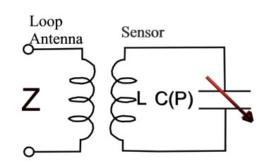
Currently wireless pressure sensors have been demonstrated to operate at temperatures up to 550°C Over the next two years we will:

- Identify existing materials most suitable for chemical and temperature sensing (6 months)
- Develop MEMS-compatible schemes for incorporation of these materials into passive wireless sensing schemes (1 year).
- Extend operating temperature range of sensors above 600 °C (18 months)
- Incorporate chemical and temperature sensing schemes into passive wireless sensors (24 months)






Wireless MEMS Sensors for Harsh Environments Wireless Sensing (Pressure Example)


Allen (Georgia Tech)

$$\mathbf{f} = \frac{1}{2 \, \text{TV} \, \mathbf{L} \, \mathbf{C}(\mathbf{P})}$$

- Utilize well-developed hermetic ceramic laminate technology from the electronics packaging industry
- Embed passive elements, sensing elements, antennas and/or movable microstructures on or into the laminate
- Passive wireless technology - no batteries, circuits in harsh environment (T > 600°C)

Wireless MEMS Sensors for Harsh Environments Proposed Approach

Allen (Georgia Tech)

- Sense variety of physical phenomena of interest to engine and vehicle performance and health:
 - Chemical monitoring incorporation of resistance-sensitive or dielectric-sensitive materials and nanomaterials into sensors whose properties change in the presence of appropriate chemical species
 - ➤ Thermal monitoring utilize change in resistance of metals, e.g., Pt, to sense changes in resonant circuit
 - ➤ Peak thermal monitoring utilize irreversible changes in conductors, e.g., melting, to produce irreversible shifts in resonance behavior when peak temperatures are exceeded
- Utilize ceramic laminate technology for non-sensing purposes, e.g., micro-scale fuel distribution/mixing

Enabling Technologies - Diagnostics and Sensors

Turbulence and Hot Streak Diagnostics in Turbines

Dunn (Ohio State) and Mavris (Georgia Tech)

Science & Technology Objective(s):

- Determine importance of free stream turbulence on heat transfer for a fully cooled turbine stage
- Determine the migration of hot streaks
- Incorporate results into state-of-the-art CFD codes

Collaborations:

- Government NASA and USAF
- URETI OSU and Georgia Tech
- Industry -Honeywell, GEAE
- Synergism with existing programs Honeywell & GEAE programs

Proposed Approach:

- Construct turbulence generator for TFE 1042 stage
- Construct heater with hot streak capability for Honeywell TFE 1042 turbine stage
- Verify Tu intensity & scale and hot streak profile
- Perform measurement program

NASA Relevance/Impact:

- Impact of free stream turbulence on film cooled stage has not been experimentally verified
- Results will have significant impact on HPT heat transfer prediction capability

Tube Heater (L) & Honeycomb Heater (R)

Milestones/Accomplishments:

- Design and construction of turbulence generator to fix TFE 1042 rig hardware
- Design and construction (or modification to existing) of heater and hot streak generator
- Verify Tu intensity and scale generated by generator.
- Verify hot streak profile capability of heater
- Perform vane & blade heat transfer measurements in presence of turbulence generator and film cooling Compare results with those in absence of turbulence

Turbulence and Hot Streak Diagnostics in Turbines Proposed Approach

- Develop a revolutionary approach for measuring the characteristics of hot streak migration, turbulence intensity, and turbulence scale in turbine rigs
- For the development research program, utilize the existing honeywell TFE-1042 hardware & an adapted hot streak and turbulence generator instead of a fuel-fired combustor
 - actual engine combustor will be used late in the program
- Adapt MEMS instrumentation to vanes & blades of TFE-1042 to provide full-surface pressure coverage
- Incorporate results of investigation into state-of-the-art CFD codes
 - NASA National Combustor Code
 - National Engine Code Validation

Nanotechnology Nanomaterials for Sensors

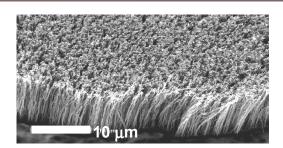
Wang, Georgia Tech

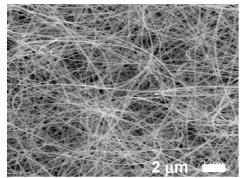
Science & Technology Objective(s):

- Use an aligned nanotube array as sensor for monitoring gas flow rate in confined regions
- Fabricate nanosize gas (species) sensors using semiconducting oxide nanobelts

Collaborations:

- Government Oak Ridge National Lab
- URETI Peter Heskerth


Proposed Approach:


Gas flow sensor with aligned carbon nanotubes

- Step 1: Synthesizing aligned nanotube arrays
- Step 2: Building the set up for field emission measurement under flowing gas environment
- Step 3: Testing the device for engine applications
 Gas species sensor w/ semiconducting oxide nanobelts
- Step 1: Synthesizing oxid nanobelts (ZnO)
- Step 2: Building the electrodes using e-beam lithography
- Step 3: Testing the device for gas sensor

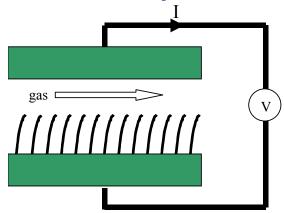
NASA Relevance/Impact:

 In-situ real time monitoring of gas flow and gas composition for improved engine control, reduced emissions, health monitoring Aligned
Carbon
Nanotubes

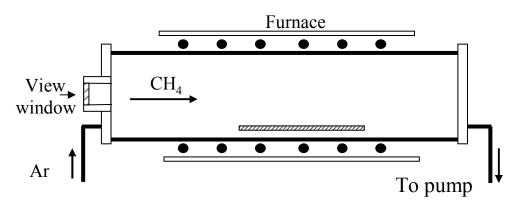
Semiconducting
Oxide
Nanobelts

Milestones/Accomplishments:

	First Year	M1	M2	М3	M4	M5	М6
1	Synthesis of aligned carbon nanotubes						
2	Synthesis of oxide nanobelts						
		М7	M8	М9	M10	M11	M12
3	Building set-up for field emission testing						2



Nanomaterials for Sensors: Gas Flow Sensing Concept and Proposed Approach

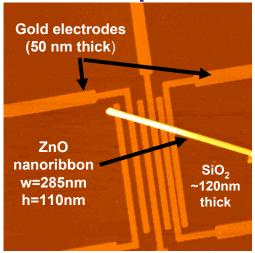

Wang, Georgia Tech

Sensor Concept and Testing

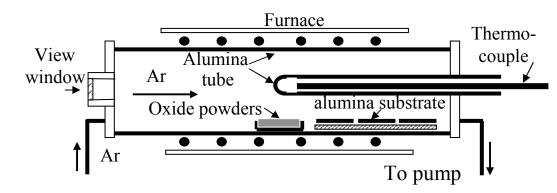
- Emission current changes with distance between tips of nanotubes and counter electrode
 - emission current should drop as nanotubes are bent by flow
- Monitor emission current and correlate to gas flow rate

Synthesis of Nanotubes

- Deposit Fe/Ni catalyst particles onto a ceramic substrate
- Grown carbon nanotubes by decomposition of CH₄ at high temperature
- Control temperature and gas flow rate to optimize the alignment



Nanomaterials for Sensors: Gas Species Sensing Concept and Proposed Approach


Wang, Georgia Tech

Sensor Concept and Testing

- Electrical conductance of nanobelt depends on type/amount of molecules adsorbed on its surface
- Build nanosensors out of individual semiconductive oxide nanobelts,
 - Make 2 probe measurements of electric conductance of single nanobelt wire under different temperatures and gas partial pressures

Synthesis of Oxide Nanobelts

- Place oxide powder as the source material in the crucible
- Thermal vaporization of the oxide followed by a deposition at the low temperature region results in the growth of nanobelts
- Control temperature and gas flow rate to optimize the morphology

Nanotechnology Nanometallic Fuel Additives

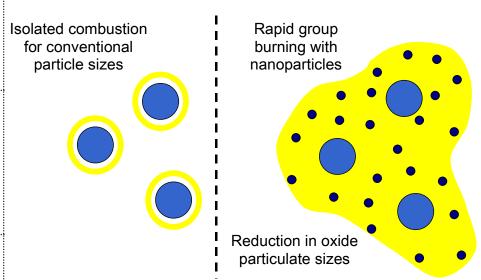
Seitzman and Wang, Georgia Tech

Science & Technology Objective(s):

- Develop high energy density fuels with good combustion efficiency for high speed propulsion
- Improve understanding of combustion of nanometal fuel additives

Collaborations:

- Government AFRL
- Industry Argonide
- URETI Zinn, Jagoda, Menon
- Synergism with existing programs Current nanometal solid propellant studies (300-2000 psi)


Proposed Approach:

- Combine nanoscale and microscale metal particles with a liquid to form a fuel gel that gives high combustion efficiency and a compact reaction zone
- · Use JP fuel and burn at elevated pressure

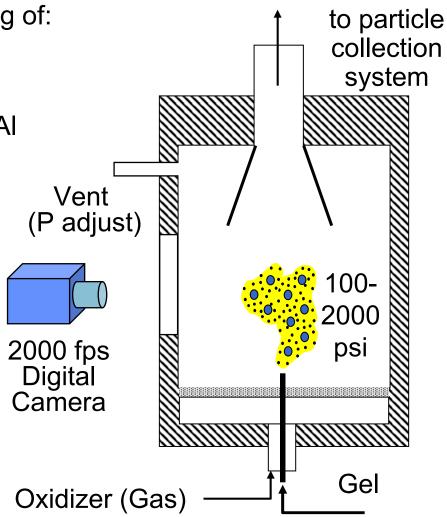
NASA Relevance/Impact:

 Reduce fuel tank size and combustor length (reduce combustion time or reduce ignition delay) for high speed propulsion systems

Enhanced Combustion with Nanoparticles:

Milestones/Accomplishments (2 Years):

- Production of JP/Al gels with different Al particle size distributions
- Characterization of gel combustion to identify enhanced combustion due to group particle interactions with nanoparticles
- Characterization of combustion efficiency through residual particle analysis



Nanometallic Fuel Additives Metal Gel Studies

Seitzman and Wang, Georgia Tech

- Burn small samples of gels consisting of:
 - conventional Al particles and JP
 - nano-Al particles and JP
 - mixtures of nano & conventional Al
- Compare combustion times
- Characterize nanometallic fuel additives and residual combustion particles (oxides & unburned AI) by high-resolution TEM
- Characterize chemical composition of the residuals by analytical techniques
 - determine metal combustion efficiency

ENABLING TECHNOLOGIES - Continued

Pursue basic technology areas with potential applications to wide range of aeropropulsion issues

Actuators

- Combustion driven actuators for mixing control
- Plasma augmentors for combustion

Diagnostics and MEMS Sensors

- Passive, wireless MEMS sensors
- Turbulence and hot streak diagnostics in turbines

Nanotechnology

- Nanomaterials for sensors
- Nanometallic fuel additives

URETI Enabling Technology - Materials

Kick-off Meeting with Sponsors

Convened at:

NASA Glenn Research Center

Jim Williams

11/18/02

Improved Performance and Reliability Materials

Tasks:

- Materials Support for Performance and Life Methods Modeling
 - Properties: typicals and minimums
 - Materials Characterization
- Higher T₃ and T₄₁ Capability
 - Airfoil Materials
 - TBCs
 - Disk Materials (to be added later or funded elsewhere)
- Low Emission Combustor Materials

Benefits of Further Improvements

Reliability

- Longer range twin engine aircraft
 - ETOPS now standard extend ETOPS approval
 - Lower maintenance cost
- Lower operating cost
- Improved fleet management (UER ≈ 0.08%)

Performance - Lower Fuel Consumption (SFC)

- Longer range
- Lower operating cost

Environmental

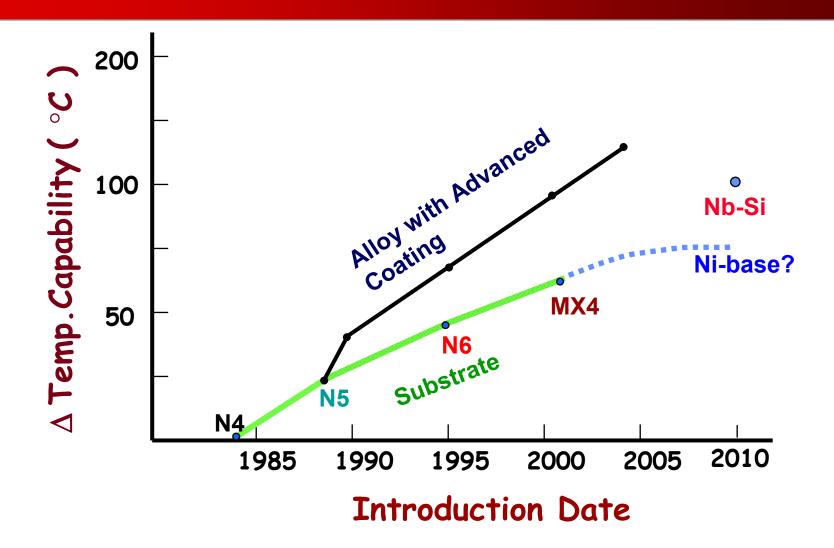
Lower emissions and noise

Higher T's Require Improved Materials

Important "Rules of Thumb":

- 55 °C △T3 ≈ 4 5% SFC
- 55 °C △T3 ≈ 50 °C △T41
- This requires better disk and turbine blade materials
- Approximate cost of introducing new disk material is \$35M (this is a major decision)
- Approximate cost of introducing new turbine blade material is \$10M (assumes minor castability changes)
- If T₃ and T₄₁ are high enough:
 - improved casing materials
 - improved compressor blades (cast Ni-base alloys?)

More fuel efficient engines come at a substantial cost



Airfoil Alloy Trendline

Near-Net Shape Refractory Intermetallic Composites

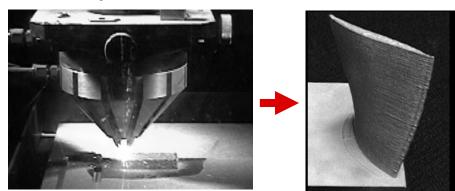
M. J. Mills, H. L. Fraser and J. C. Williams, MSE / OSU

Science & Technology Objective(s):

- Pursue a revolutionary advance in the performance and fabrication of turbine blade materials
- Utilize the laser engineered net-shape (LENS™)
 process to produce Nb-Ti-Si in-situ composites

Collaborations:

- Government NASA Glenn Research Center
- Industry GECRD (Bernard Belway), Optimec (R. Grylls), Reference Metals (T. Cadero)
- Synergism with existing programs Center for Accelerated Maturation of Materials (CAMM / OSU)


Proposed Approach:

- Using existing LENS[™] facility (OSU), produce deposits from elemental powder blends
- Analysis of microstructure/mechanical/oxidation properties
- Optimization of composition/microstructure/properties via combinatorial approaches

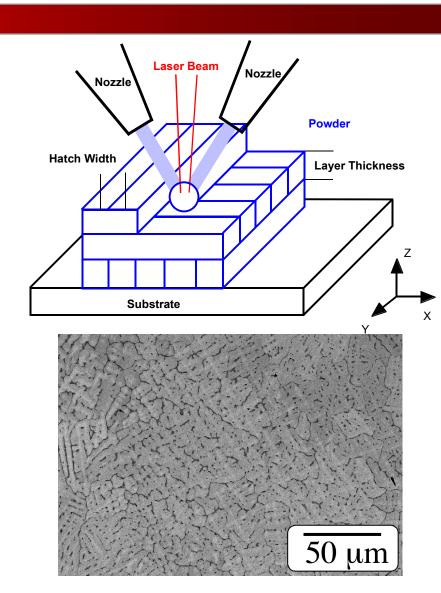
NASA Relevance/Impact:

- Cost-effective route to improved high-temperature turbine engine components
- Complex, near-net shape and functionally graded structures can be produced

LENSTM to Produce Novel Microstructures and Components:

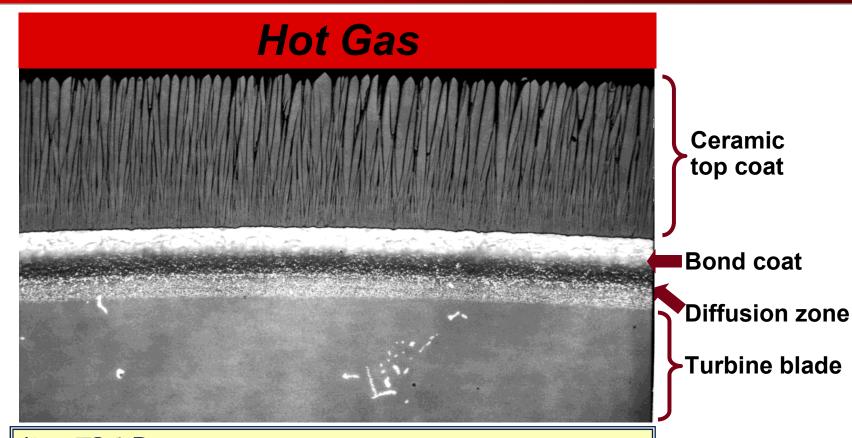
Milestones/Accomplishments:

- Obtain suitable Nb powders and perform trial depositions
- Produce wide range of compositions in Nb-Ti-Si system for fabrication and detailed analysis
- Microstructure characterization using SEM/TEM/FIB techniques.
- Mechanical testing and oxidation studies as a function of composition.
- Use generated database to target promising compositions
- Explore compositionally graded structures.



Proposed Approach

- Use existing LENS[™] facilities in MSE/OSU.
 - In LENSTM, a focused laser light source is used as a heat source to melt a feed of metallic powder to build-up a solid, threedimensional object
- Advantages include:
 - Complex, near-net shapes can be fabricated
 - Potentially attractive, non-equilibrium microstructures can be created
- Novel approach utilizes elemental powder feedstocks since they are:
 - Much cheaper than pre-alloyed powders
 - When phases formed have a negative enthalpy of mixing, can produce fine, dense and homogeneous microstructures
 - Graded compositions can be readily made
- Already demonstrated ability to produce desirable microstructures in the Nb-Ti-Si-Cr alloy system



Thermal Barrier Coatings

Key TBC Features:

- · Columnar structure in top coat for spall resistance
- · Oxidation resistant and adherent bond coat
- Bond coat compatible with alloy substrate

Enabling Technologies - Materials Higher T₄₁ Materials - Thermal Barrier Coatings

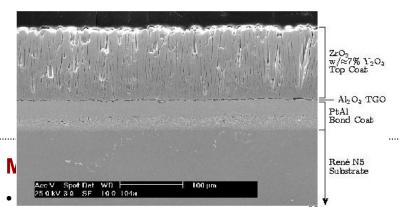
Mark Walter, The Ohio State university

Science & Technology Objective(s):

develop a comprehensive, systems-based model for thermal and environmental barrier coatings

Collaborations:

- Government NASA GRC
- URETI -
- Industry GE Aircraft Engines
- Synergism with existing programs -


Proposed Approach:

- Start with EB-PVD coatings with PtAl Bond coats and superalloy substrates
- Compare simulations to existing data.
- Simulate top coat materials with varying degrees of compliance CMAS depositions.

NASA Relevance/Impact:

Improved TBCs are an integral part of higher T₄₁

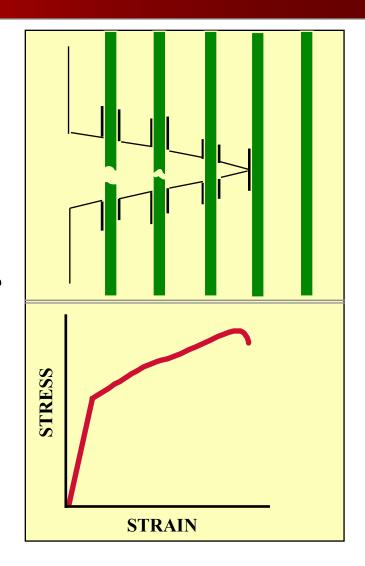
TBC Example

Incorporation of wrinkling of the bond coat/TGO/top coat interface

- Include finite elements to enable damage propagation.
- Study top coat sintering and CMAS deposits.
- · Compare simulations to experiments.

Proposed Approach

- Begin with models of EB-PVD coatings with PtAl Bond coats and superalloy substrates which incorporate phase evolution, thermally growing oxide, and damage evolution.
- Compare simulations of isothermal and thermocylic loading to existing experimental data.
- Simulations of top coat materials with varying degrees of compliance and accounting for sintering and CMAS depositions.
- Investigate alternative top coat materials and structures through materials design simulations.
- To design an optimal set of residual stresses and crack compliances for improved coating performance and life.



Desirable CMC Characteristics

- o High Temperature Capability
 - > Environmentally Stable Constituents
- o Thermal Shock Resistance
 - > High Thermal Conductivity
 - High Matrix Strength
- o Damage Tolerance
 - > Continuous Fiber Reinforcement
 - > Retention of Fiber Dominated Behavior
- o Affordable
 - > Multiple sources
 - > Common fiber type?
- o Good Shape Forming Capability
- o Environmental Durability

No affordable production sources today

Demonstrator CMC Combustor Inner Liner

- Successfully Completed Rig Testing With SiC/SiC CMC Inner Liner
- Post-Test NDE Showed No Signs of Material Degradation
- Rig Test Conditions;
 - · 15 Hours at F110 Conditions
 - · 40+ Hours at IHPTET Conditions
- Next Step-ATEGG Core Engine
 Test Initiated

URETI - Aeropropulsion and Power

CMC's incorporating a Co-Continuous Ceramic-Metal Matrix Component

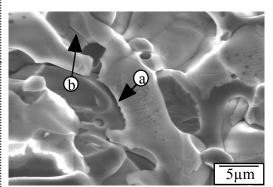
Glenn Daehn, & Jim Williams, The Ohio State University

Science & Technology Objective(s):

 Develop new class of high temperature ceramicmetal composites. Will posses: low density, good toughness, high temperature strength, low processing cost.

Collaborations:

- NASA- Glenn (background/constraints re/CMC's)
- GEAE (background/constraints re/CMC's)
- BFD, Inc. (Processing technology)


Proposed Approach:

- Visit CMC experts at NASA-Glenn, GEAE and WPAFB - detail project design and ensure relevance.
- Design new desired microstructure involving continuous ceramic and metal phases
- Produce materials and measure properties

NASA Relevance/Impact:

 Conventional superalloys are reaching fundamental performance limits. New materials proposed that can provide higher operating temp., low density, without poor toughness and high cost of similar materials.

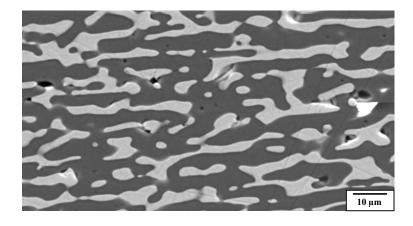
Example- Fracture Surface, Ni Al - Al₂O₃ co-continuous composite:

Lighter phase is NiAl. Composite tougher than constituents. Debonding (a) and deflection (b) shown here.

Milestones/Accomplishments:

- CMC state of the art report and detailed project objectives (after consultation with collaborators)
- Microstructural objectives and processing plan for new materials.
- Demonstrate production of new materials.
- · Measure and report properties.

Proposed Approach - Reactive Infiltration


Established Processing Scheme

 SiO₂ shaped precursor is immersed in liquid Al at 1100° C.

- As 2 moles of Al₂O₃ occupy less volume than 3 moles of SiO₂, porous alumina is created and infiltrated!
- Process is net-shape.

Enhancements in this program

- Use high melting metal or intermetallic to fill pores in ceramic instead of aluminum.
- Add continuous ceramic fibers as well.

Example: NiAl + Al_2O_3 composite. Dark phase is ceramic (Al_2O_3).

Summary and Take-aways

- Substantial progress in aero engine performance in past 25 years
 - Materials have played a major role in this
- Further improvements will require major materials investment in Nibase disks and blades
 - Continued improvements in Ni-base turbine blades open to question
- Lower emissions combustors require better liner materials
 - CMCs are the best bet
- Opportunities in other lighter weight and higher temperature materials await market pull and industrial base investment
 - Should do enabling work now

Summary of Progress – past 25 years

- Thrust:weight has increased ~2.5X
 - Higher operating temperatures
 - Lighter weight structures and materials
- Time on wing has increased ~40X
 - Reduced inspections
 - Improved combustor pattern factors
 - Improved hot section materials
- Fewer delays, cancellations, unscheduled removals and in-flight shut downs
 - Broad use of FADEC
 - Better bearings
 - Improved controls and accessories
 - More EGT margin
 - More stall margin (margin varies between engine companies)
 - ETOPS now routine

Disk Task to be funded elsewhere

Funding Possibilites:

- FAA additional funding
- Ohio/NASA/USAF Propulsion 21
- •GE company funded program

Advanced Disk Alloy Goals

- Density < Predecessor (.297 vs. .302)
- Tensile (UTS) \cong same
- Creep/Rupture (+30°C improvement)

Lighter Weight

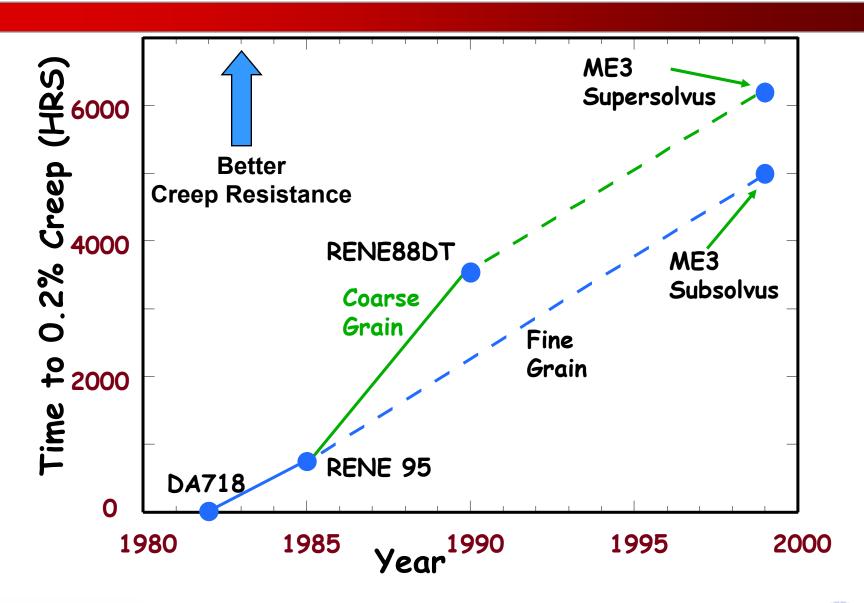
- LCF \cong same until 650°C; Superior >650°C
- · SPLCF > same

Enables
Higher T3

- Cyclic FCGR \cong same
- Dwell FCGR 50X slower (+80°C Capability)

Superior Probabalistic Life

Improved stability alloy enables high temperatures & long hold times use while maintaining lower temperature properties



Advanced Disk Alloy Capability

